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Abstract 
 
The steady hydromagnetic flow of a conducting fluid above a rotating disk is studied with heat transfer in the 

presence of uniform suction or injection without neglecting the Hall effect. The governing momentum and energy 
equations are solved numerically using finite differences. The results show that the inclusion of the Hall current 
together with the suction or injection velocity has important effects on the velocity and temperature fields. 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 

 
1. Introduction 

The hydrodynamic flow due to a rotating disk was 
studied by many researchers (von Karman, 1921; 
Cochran, 1934; Benton, 1966; Lee, 2003). The 
influence of an external uniform magnetic field on the 
flow due to a rotating disk was studied (El-Mistikawy 
and Attia, 1990; El-Mistikawy and Attia, 1991) 
without considering the Hall effect. The Hall effect on 
the rotating disk problem was considered in (Aboul-
Hassan and Attia; 1997; Attia, 2002) while the ion 
slip effect was studied by (Attia, 2004). The effect of 
suction on the flow due to a rotating disk was studied 
in (Stuart, 1954; Ockendon, 1972). The problem of 
heat transfer from a rotating disk maintained at a 
constant temperature was first considered by (Mill-
saps and Pohlhausen, 1952) for a variety of Prandtl 
numbers in the steady state. (Sparrow and Gregg, 
1960) studied the steady state heat transfer from a 
rotating disk maintained at a constant temperature to 
fluids at any Prandtl number. Later, many authors 
have studied the heat transfer near a rotating disk 

considering different thermal conditions (Attia, 2001; 
Le Palec, 1989). 

In the present work the steady hydromagnetic flow 
with heat transfer of a viscous incompressible elec-
trically conducting fluid due to the uniform rotation 
of an infinite non-conducting porous disk in an axial 
uniform steady magnetic field is studied in the pre-
sence of uniform suction or injection considering the 
Hall effect. The governing non-linear differential equ-
ations are solved numerically using finite differences 
to obtain the velocity and temperature distributions. 
The effect for the magnetic field, the Hall current and 
the suction or injection velocity on the velocity and 
temperature is reported. 
 

2. Basic equations 

The disk is assumed to be insulating and rotating in 
the z=0 plane about the z-axis with a uniform angular 
velocity ω and is maintained at a constant temperature.  
The fluid is assumed to be incompressible and has 
density ρ, kinematic viscosity ν and electrical con-
ductivity σ. An external uniform magnetic field is 
applied in the z-direction and has a constant flux 
density Bo. The magnetic Reynolds number is as- 
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sumed to be very small, so that the induced magnetic 
field is negligible. The electron-atom collision fre-
quency is assumed to be relatively high, so that the 
Hall effect can not be neglected (Sutton, 1965). A 
uniform flow through the surface of the disk is ap-
plied. The equations of steady motion in cylindrical 
coordinates are given by (Attia, 2002; Sutton, 1965) 
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where u, v, and w are the velocity components in the 
directions of increasing r, φ, and z, p is denoting the 
pressure, m (=σ β Bo) is the Hall parameter which can 
take positive or negative values, β=1/nq is the Hall 
factor, n is the electron concentration per unit volume, 
and -q is the charge of the electron (Sutton, 1965). 
Due to the axial symmetry of the problem, there is no 
dependence on φ (von Karman, 1921). Positive 
values of m mean that Bo is upwards and the electrons 
of the conducting fluid gyrate in the same sense as the 
rotating disk. For negative values of m, Bo is down-
wards and the electrons gyrate in an opposite sense to 
the disk. By introducing von Karman transformations 
(von Karman, 1921), 
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where ζ is a non-dimensional distance measured 
along the axis of rotation, F, G, H, and P are non-
dimensional functions of the modified vertical 
coordinate ζ, Eqs. (1)~(4) take the form 
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and γ is the magnetic interaction number which 
represents the ratio between the magnetic force to the 
fluid inertia force and is given by γ=σBo

2/ρω (El-
Mistikawy and Attia, 1990; El-Mistikawy and Attia, 
1991). The boundary conditions for the velocity field 
are given by 

 
(0) 0,     (0) 1,      (0) $,F G H= = =  (9a) 

,     0,      0,      0.F G Pζ → ∞ → → →  (9b) 
 

where $ is the suction or injection parameter, which 
takes constant negative values for suction and 
constant positive values for injection. Equation (9a) 
indicates the no-slip conditions of viscous flow 
applied at the surface of the disk. Far from the surface 
of the disk, all fluid velocities must vanish aside the 
induced axial component as indicated in Eq. (9b).  
The above system of Eqs. (5)~(7) with the prescribed 
boundary conditions given by Eq. (9) are sufficient to 
solve for the three components of the flow velocity.  
Equation (8) can be used to solve for the pressure 
distribution if required. 

 
Due to the difference in temperature between the 

wall and the ambient fluid heat transfer takes place.  
The energy equation, by neglecting the dissipation 
terms, takes the form (Sparrow and Gregg, 1960), 
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where T is the temperature of the fluid, cp is the 
specific heat at constant pressure of the fluid, and k is 
the thermal conductivity of the fluid. The boundary 
conditions for the energy problem are that, by con-
tinuity considerations, the temperature equals Tw at 
the surface of the disk.  At large distances from the 
disk, T tends to T∞, where T∞ is the temperature of the 
ambient fluid. In terms of the non-dimensional vari-
able �=(T-T∞)/( Tw-T∞) and using von Karman 
transformations Eq. (10) takes the form, 
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where Pr is the Prandtl number given by , Pr=cpµ/k  
The boundary conditions in terms of θ are expressed 
as 
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Since the significant velocity and temperature 

variations in the fluid are confined to the region 
adjacent to the disk, we define the thickness of these 
layers by certain standard measures (Sparrow and 
Gregg, 1960). For the tangential direction, we define 
a displacement thickness. Also, as a measure of the 
extent of the thermal layer, we may introduce a 
thermal thickness based on the temperature excess 
above the ambient. The displacement and thermal 
thickness are, respectively, given by 
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The heat transfer from the disk surface to the fluid 

is computed by  application of Fourier's law; q=-
k(∂T/∂z)w. Introducing the transformed variables, the 
expression for q becomes 
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By rephrasing the heat transfer results in terms of a 
Nusselt number defined as, Nu=q(ν/ω)1/2/k( Tw-T∞) the 
last equation becomes 
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The action of viscosity in the fluid adjacent to the 

disk tends to set up tangential shear stress ϕτ  which 
opposes the rotation of the disk. There is also a 
surface shear stress rτ  in the radial direction.  In 
terms of the variables of the analysis and by applying 
Newtonian shear stress formula (Sparrow and 
Gregg, 1960), the expressions of ϕτ  and rτ are 
respectively given as 
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The system of non-linear differential equations (5)~ 
(7) and (11) is solved under the conditions given by 
Eqs. (9) and (12) using the Crank-Nicolson implicit 
method (Ames, 1977) to obtain the velocity and 
temperature distributions. The resulting system of 
equations has to be solved in the infinite domain 0< 
ζ<∞. A finite domain in the ζ-direction can be used 
instead with ζ chosen large enough to ensure that the 
solutions are not affected by imposing the asymptotic 
conditions at a finite distance. The independence of 
the results from the length of the finite domain and 
the grid density was ensured and successfully chec-
ked by various trial and error numerical experimen-
tations. Computations are carried out for ζ∞=10 and 
step size ∆ζ=0.04 which are found adequate for the 
ranges of the parameters studied here. Larger finite 
distance or smaller step size do not show any sig-
nificant change in the results. Convergence of the 
scheme is assumed when any one of F, G, H, θ, dF/dζ, 
dG/dζ, and dθ/dζ for the last two approximations 
differs from unity by less than 10-6 for all values of ζ 
in 0<ζ<10. It should be pointed out that the results 
obtained herein reduce to those reported by (Aboul-
Hassan and Attia, 1997; Attia, 2002) when $=0.  
Also, the steady state solutions reported by (Attia, 
2001) are reproduced by setting $=0 and m=0 in the 
present results.  
 
3. Results and discussion 

Figures 1a and b presents the variation of the axial 
velocity at infinity H∞ with the Hall parameter m and 
the suction parameter $ and for γ=0.5 and 1, respec-
tively. It is clear that increasing the parameter $ in-
creases H∞ for all values of m and γ. The maximum 
value of H∞ occurs at negative and small values of m 
for all values of γ. Increasing γ reduces the axial flow 
towards the disk, i.e. increases H∞. For small values 
of γ, and all values of m, as shown in Fig. 1a, the 
axial flow at infinity is towards the disk for higher 
values of γ, while as indicated in Fig. 1b, H∞ reverses 
direction in the case of negative and small values of 
m for $≥0. 

 
Figures 2a and b presents the variation of the 

displacement thickness δc with the Hall parameter m 
and the suction parameter $ and for γ=0.5 and 1, 
respectively. Increasing $ increases δc for all values of 
m and γ. The maximum value of δc occurs at small 
negative values of m while a minimum value for δc 
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Fig. 1. Variation of H∞ with m for various values of  $: (a) 
γ=0.5, and (b) γ=1. 
 
occurs at small positive values of m for all values of γ.  
It is clear that the effect of γ on δc depends on m and $.  
In general, increasing γ increases δc for negative m, 
but it decreases δc for positive values of m. The effect 
of γ on δc becomes more apparent for higher values  
of $. 

Figures 3a and b presents the variation of the 
thermal thickness δt with the Hall parameter m and 
the suction parameter $ for Pr=10 and for γ=0.5 and  
1, respectively. Increasing $ increases δt for all values 
of m and γ. The effect of m on δt can be neglected 
entirely in the suction case ($=-1). The maximum 
value of δt occurs at small negative values of m. The 
effect of γ on δt depends on m and $. In the suction 
case $<0, increasing γ has no significant effect on δt. 
When $=0, increasing γ increases δt for negative m 

 
 

 
Fig. 2. Variation of δc with m for various values of  $: (a) 
γ=0.5, and (b) γ=1. 

 
but it decreases δt for positive m. In the injection case, 
$>0, increasing γ increases δt for all positive or 
negative values of m. 

 
Tables 1a-c present the effect of the parameters m 

and $, respectively, on the axial flow at infinity H∞, 
the radial shear stress τr, and the tangential shear 
stress τφ and for γ=1. As shown in Table 1a, Increasing 
$ decreases the axial flow towards the disk for all 
values of m. For positive or negative large values of 
m, the axial flow at infinity keeps its direction 
towards the disk. For the case m=0 or small positive 
values of m, the axial flow reverses direction for the 
injection case. It is of interest to find also that, in the 
case of small negative values of m, the axial flow 
reverses direction in the injection case and even in  
the case of zero suction or injection. Table 1b in- 
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Fig. 3. Variation of δt with m for various values of  $: (a) 
γ=0.5, and (b) γ=1. 
 

dicates that for the suction case, $<0, increasing $ 
increases τr but for the injection case, $>0, increasing 
$ decreases τr for positive or large negative values  
of m. However, for small negative values of m, 
increasing the injection velocity increases τr, but 
increasing $ more decreases τr. For positive values of 
m and all values of $ except for large suction 
velocities ($=-2), increasing m increases τr. For the 
case of large suction velocity and large positive 
values of m, increasing m decreases τr. For small  
and negative values of m, increasing the magnitude of 
m decreases τr, on the other hand, for large negative 
values of m, increasing the magnitude of m increases 
τr. As clear from Table 1c, increasing $ decreases the 
magnitude of τφ for all values of m. For positive or 
negative values of m, increasing the magnitude of m 

Table 1. The effect of the parameters m and $ on: (a) H∞, (b) 
τr, and (c) τφ. 

(a) H∞ M=-5 m=-0.5 m=0 m=0.5 m=5 

$=-2 -2.0139 -1.9821 -2.0319 -2.0824 -2.0933

$=-1 -1.0863 -0.9526 -1.0899 -1.2144 -1.3383

$=0 -0.5561 0.0903 -0.2534 -0.5098 -0.9314

$=1 -0.3962 1.0109 0.4325 0.0227 -0.7455

$=2 -0.3303 1.7346 1.0162 0.4463 -0.6407
 

(b) τr m=-5 m=-0.5 m=0 m=0.5 m=5 

$=-2 0.1508 0.0502 0.1889 0.3362 0.3235

$=-1 0.2649 0.0844 0.2512 0.4301 0.4765

$=0 0.4070 0.1452 0.3093 0.4953 0.5792

$=1 0.4021 0.1831 0.3217 0.4895 0.5532

$=2 0.3249 0.1745 0.2915 0.4324 0.4587
 

(c) τφ m=-5 m=-0.5 m=0 m=0.5 m=5 

$=-2 -2.0334 -2.3412 -2.4305 -2.3924 -2.0818

$=-1 -1.1225 -1.5278 -1.6566 -1.6339 -1.2638

$=0 -0.5446 -0.9132 -1.0691 -1.0626 -0.7088

$=1 -0.2632 -0.5578 -0.6912 -0.681 -0.3698

$=2 -0.1209 -0.3684 -0.4668 -0.4453 -0.1803

 
decreases the magnitude of τφ for all values of $. 

Tables 2a-c present the effect of the parameters m 
and $, respectively, on the displacement thickness δc, 
the thermal thickness δt, and the Nusselt number Nu.  
The results are estimated for γ=1 and Pr=10. Table 2a  
shows increasing $ increases δc  for all values of m. 
For negative values of m, increasing the magnitude of 
m increases δc  for all values of $. For the case of 
injection and small suction velocity and for small 
positive values of m, increasing m decreases δc. 
However, for large positive values of m, increasing m 
increases δc. Also it is found that in the case of large 
suction velocity and positive values of m, increasing 
m increases δc. As shown in Table 2b, increasing $ 
increases δt for all values of m and its effect is more 
pronounced for higher values of $. For positive values 
of m, increasing m decreases δt. For small negative 
values of m, increasing the magnitude of m increases 
δt, but for large negative values of m, increasing the 
magnitude of m decreases δt. Table 2c indicates that 
increasing $ decreases Nu for all values of m by 
blanketing the surface with fluid whose temperature 
is closed to Tw. For small values of m, increasing m 
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Table 2. The effect of the parameters m and $ on: (a) δc, (b) δt, 
and (c) Nu. 

(a) δc m=-5 m=-0.5 m=0 m=0.5 m=5 

$=-2 0.4907 0.4267 0.4101 0.4126 0.4737

$=-1 0.8743 0.6530 0.5970 0.5862 0.7348

$=0 1.5439 1.0846 0.8989 0.8304 1.0675

$=1 2.1953 1.7176 1.3038 1.1278 1.4282

$=2 2.8672 2.4267 1.7749 1.4741 1.8523

 
(b) δt m=-5 m=-0.5 m=0 m=0.5 m=5 

$=-2 0.0498 0.0499 0.0498 0.0498 0.0498

$=-1 0.0988 0.0995 0.0989 0.0983 0.0980

$=0 0.5684 0.9162 0.7003 0.5682 0.4949

$=1 2.6288 7.2658 4.9860 3.3776 2.1573

$=2 4.3454 9.1751 8.9685 6.6310 3.5789

 
(c) Nu m=-5 m=-0.5 m=0 m=0.5 m=5 

$=-2 -20.009 -20.005 -20.0102 -20.016 -20.0158

$=-1 -10.0375 -10.0095 -10.033 -10.0587 -10.068

$=0 -1.0421 -0.7117 -0.8811 -1.0579 -1.1881

$=1 -0.0034 -0.0034 -0.0034 -0.0034 -0.0034

$=2 -0.0071 -0.0071 -0.0071 -0.0071 -0.0071

 
increases Nu, however, for large positive or negative 
values of m, increasing the magnitude of m increases 
Nu. The effect of m on Nu is more pronounced for 
smaller values of $.  
 
4. Conclusion 

The steady MHD flow of a conducting fluid with 
heat transfer due to an infinite rotating porous disk are 
studied in the presence of a uniform  suction  or  
injection through the surface of the disk considering 
the Hall effect.  The magnetic field, the Hall effect 
and the suction or injection velocity have interesting 
effects on the velocity and temperature fields.  It is 
shown that the sign of the Hall parameter is important 
and the effect of the Hall parameter on the velocity 
and temperature fields is more pronounced for higher 
values of the magnetic field and the injection velocity.  
It is of interest to see the reversal of the direction of 
the axial velocity component for some values of the 
Hall parameter and the suction or injection velocity.  
It is also shown that the effect of the magnetic field on 
the displacement thickness and the thermal thickness 

depends on the Hall parameter and the suction or 
injection velocity.  

 
It should be mentioned that for all the figures and 

tables given above The case $=0 corresponds to the 
results presented by (Attia, 2001) while the case m=0 
corresponds to those obtained by (Aboul-Hassan and 
Attia, 1997; Attia, 2002).  
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